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Abstract We present molecular dynamics calculations for a two-dimensional binary alloy 
composed of soh disks. We start the simulation with a system of 108 identical particles at low 
temperature "ranged in a close-packed triangular lattice. Then the diameter ratio A is varied in 
steps while the temperature is kept canstant. We define a set of order parameten suitable for 
detecting the existence of ordered binay domains over a wide range of A-values. The phase 
diagram thus obtained for the mge 0.3 < A < 1 shows two ordered phases: one FCC svucture 
below A = 0.Fand a new smcture, not previously reported. for 0.5 < A < 0.85. This is not 
expected from Hum-Rothery mles but is in remarkable agreement with experimental results for 
colloidal systems. Both transitions are first-order ones: we also study hysteresis and metastable 
states. 

1. Introduction 

It is well known that the mixing of atoms with large differences in~atomic sizeis very 
unlikely in binary intermetallic compounds, and phase separation is to be expected .when 
the atomic diameters differ by more than 15% [I]. On the other hand, the situation is 
different in macroscopic systems: in 1980 Sanders [2] found a number of different ordered 
binary phases of two clearly distinct particle sizes in a natural specimen of gem opal; the 
components of that sample were silica. spheres of diameters 0.36 and 0.21 pm. Recently, 
Barlett et Q L  [3] presented similar results for a manufactured system of bidisperse colloidal 
particles of radii 0.321 and 0.186 pm. However, there is an important difference between 
colloidal systems and intermetallic alloys: the long-range attractive force that is absent 
in the former; but in both studies the authors explained the ordered mays in terms of 
packing arguments. Besides the interest in these 'hard-sphere' systems in connection with 
particle aggregates or the above-mentioned intermetallic compounds, one should consider 
the possibility of new kinds of material-as suggested by Barlett et al-made, for example, 
by mixing plastic and metallic particles of different sizes. 

In a recent work Bocquet et al 141 presented numerical simulations of the amorphization 
of a two-dimensional (zD) binary alloy where particles interact through a soft repulsion 
potential and molecular dynamics (MO) calculations are performed~at constant temperature, 
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while the diameters ratio A (A = ul/uz, where uI is the diameter of small particles, 1, and uz 
is the diameter of large particles, 2) is gradually varyied, down to a critical value of h that 
brings the system into amorphization. Gonplves et a1 151 utilized the same procedure to 
determine the critical value of h for an interface amorphization in a similar system and found 
that the interface region transforms into an amorphous state for A-values a little bigger than 
for the bulk amorphization of Bocquet et al. This could mean that the type of diagnostic 
technique is decisive in determining whether or not the system attains an ordered phase, 
and also that images of the system during evolution could be of considerable help. 

We present here an attempt to reproduce the dynamics of a bidisperse spheres system, 
via a MD study of the structural stability of a ZD binary alloy of soft disks, as a function of the 
size ratio, in order to investigate the existence and formation of ordered mixed structures at 
small A-values. In the first part of the calculations we follow the same procedure as in [4] and 
perform a simulation with 108 identical particles on a triangular lattice, decreasing the size 
of 54 randomly chosen particles and increasing the diameter of the others. The simulation 
is performed slowly enough to guarantee the thermodynamic equilibrium of the system 
throughout the transformation. while particles are moved by MD at constant temperature 
and volume. Going beyond the transition reported by Bocquet et al for h = 0.780, we find 
evidence of increasing order in the system for lower values of A. By direct inspection of 
the resulting configurations, we observe the formation of domains of binary ordered alloy 
that looks like some of the structures found by Sanders in the gem opal [Z ] .  

In the following we are going to present detailed studies of the emerging structures that 
give rise to a phase diagram with two ordered phases for small h-values, separated by a 
first-order transition for A = 0.5. 

The organization of the work is as follows: in section 2 we present the model and 
methods; in section 3 we describe the order parameters that we utilize to monitor the 
transformations: and section 4 is devoted to the results. The conclusions are presented in 
section 5. 

S Gonplves and J R Zglesias 

2. Model 

We consider a 2D model where a fixed number of ‘soft disks’ interact through a purely 
repulsive pair potential 141, given by 

I2 v, = E (?) 
where E sets the energy scale and r is the distance between centres of a pair of interacting 
disks. is the ‘distance’ betwee,n two disks in contact, and is defined as 

In the simulations that we are going to describe in section 4.1 we consider a hexagonal 
box with N close-packed disks arranged on a perfect triangular lattice. Six replicas of the 
central box are considered at each side of the hexagon to guarantee the periodic boundary 
conditions. Then one chooses at random N / 2  disks and decreases their diameter, U ( ,  while 
increasing 02, that of the N / 2  remaining disks and keeping constant the mean atomic 
diameter U defined, according to conformal solution theory [6], as 

which is equal to the initial value U of the monodisperse system; xi is the concentration of 
the species i ,  so in this case X I  = xz =OS. 
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The size ratio of the two kinds of particle in the system  is^ denoted by the parameter 

So, the excess (with respect to an ideal gas) thermodynamic properties o f ~ a  soft-disk 
bidisperse system in equilibrium depend only on A, the concentrations xi and on the 
dimensionless constant 

where N u Z / S  and kBTI6 play the role of,reduced number density and temperature, 
respectively [7], kB being the Boltzmann constant and S the area of the box. The melting 
point for the monodisperse (A = 1) system corresponds to y ' Z  1 [SI. 

The time unit of the simulations is r = e, where m is the mass of the particles, 
and the time step At = ~ 5  x 10-%. All the simulations are carried out for a fixed number of 
particles N and fixed concentration, NI = N/2;  thus the density of the system remains 
constant. The temperature is held constant by means of the thermostat of Hoover et 
al (see 191) in the variant of the leap-frog scheme proposed by Brown and Clarke [lo]. 
Consequently each complete simulation comesponds to a fixed value of y .  while A is the 
sole free parameter. 

3. Order parameters 

When A decreases from the perfect-crystal initial condition value (A = :1) the system 
evolves towards a binary configuration with some degree of disorder, which may lead 
to a phase transition. To monitor the order-disorder transition one can employ different 
order parameters that are defined as follows [4]. 

(i) The structure factor, that is a measure of the translational order, 

where R, specifies the position of atom i and N is the total number of atoms in the system. 
Hereafter (. . .) denotes an ensemble average. The structure factor PG is evaluated for a 
given reciprocal-lattice vector G of the triangular lattice; ,OG = 1 for a perfectly ordered 
periodic lattice, and decreases as l/@ for a disordered system. 

( i i jhother  measure of the degree of translational order is the mean square displacement 
(A% ), given by 

where Rio specifies the lattice position of atom i. Thus, (A% ) is a measure of the 
displacement of the atoms from their zero-temperature equilibrium positions. 

(iii) The bond-orientation order is evaluated from the order parameter of Nelson and 
Halperin [ll]: 
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where ni is the number of nearest neighbours of the atom i, and 0, is the angle formed by 
the bond of an (i. j )  pair of nearest neighbours with respect to a fixed polar angle. (Y) = 1 
for a perfect triangular crystal, and goes to zero as the local disorder increases. 

(iv) Finally one can compute the fraction of atoms having exactly six neighbours, fs, 
by counting the number of particles within a cut-off radius r, lying midway between nearest 
and next-nearest lattice positions, and given by 

This method is much easier and faster to perform than the Voronol construction and seems 
to be equivalent to it, at least for the dense fluid phase near freezing and in the solid-state 
phase [8]. However, one should take care with it when A is far from 1, as it will be seen 
in section 4.2. 

Each order parameter is computed separately for each set of particles (small ones and 
large ones). Then ,I& denotes the p c  order parameter evaluated over atoms of species 
i (i = 1.2). The same is  valid for the (A% } order parameter. For the Nelson-Halperin [ll] 
order parameter we consider three types of bond: {Y,,) for bonds between type 1 atoms, 
(Yzz) for those between type 2 atoms, and (Yd for mixed bonds. Finally, in the evaluation 
off: one just considers the number of neighbours, independently of the kind. 

Moreover. one can obtain supplementary information from the average atomic positions 
and the pressure as functions of the atomic size ratio A. It can be shown that the pressure 
and the Helmholtz free energy differ only by a constant factor in systems with a power- 
law interaction potential; thus we will consider them as equivalent magnitudes. We have 
verified that the pair correlation functions, another common way of measuring the order in 
the system, do not give additional information, so we do not discuss those results here. 

4. Results 

4.1. Hexagonal box 

In [4], the atomic size ratio, A, varies from I-a monodisperse perfect triangular structure- 
to 0.7 (y  fixed at 1.64), and a first order phase transition is obtained for A = 0.78, to a 
configuration that is described as an amorphous one. In this section we perform the same 
kind of calculation and reproduce the phase transition for the same critical value of the 
size ratio. although we vary A quite a lot faster than was done in [4]. The simulations are 
performed starting with a monodisperse system, characterized by A = 1, and then slowly 
reducing the size ratio to values of A below 1, in a sequence of steps of 6A = 
After every step we let the system stabilize at constant A for 400 time steps At. This 
process is repeated up to an accumulated variation of AA = 50061, when the statistical 
averages reported below are computed over a period of 2000 At at a fixed value of A. The 
whole procedure is repeated until the desired value of A is achieved. Finally, in order to 
understand the above-mentioned experimental results we push the limiting value of A far 
beyond A = 0.78 and find indications of a new transition to an ordered state. 

The results are presented in figure 1, where we plot the order parameters fd, the 
fraction of small atoms having six neighbours, and fa, the fraction of small atoms having 
four neighbours, as functions of A. For 1 2 A 2 0.78, fd = 1, which characterizes a 
perfect triangular lattice. Going down from A = 0.78 the ordered phase starts to disappear, 
corresponding to the first-order transition reported by Bocquet etal [4]. When fi attains a 
value near fa‘ = 0.2, this order parameter does not give further information and the system 
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Figure 1. The fraction of small panicles having e x d y  six wighbours. f:, and the fraction of 
small particles having exactly four neighbours, f). versus A for a transfomtion from A = I to 
A = 0.3. in a hexagonal box for y = 1.64. 

seems to be in an amorphous state. However, supplementary information can be obtained 
from fa, which starts to increase from zero, for the same value of A = 0.78. Immediately 
after the transition one finds roughly the same number of atoms with six neighbours and 
four neighbours, but at theend of the transformation (A = 0.3) 10% of the particles have six 
neighbours, while more than 30% have four. This is a clear indication that an arrangement 
where each site has four neighbours is more stable than a six-neighbours one. 

- I )  h = 0.785 >)?.-OS 

Figure 2. Snapshots of the averaged particle positions for A = (a) 0.785, (b) 0.5 and (c) 0.3 for 
a trnnsformation from A = 1 to A = 0.3 in a hexagonal box for y = 1.64. 

In figure 2 we present a sequence of 'snapshots' of the system for different values of A 
from 1 to 0.3. One can see that the lattice is still a triangular one for A = 0.785 (figure Z(a)), 
while it shows an 'amorphous' state for A = 0.5 (figure 2(h)), i.e. atoms with four, five and 
seven neighbours are clearly seen; finally, for A = 0.3, it is possible to identify a domain of 
considerable size (13 atoms) that corresponds to a perfect binary alloy (figure 2(c)). Notice 
the continuous change of shape~of the cluster of particles inside the dynamic box, that starts 
as a hexagon and ends approximately as a square. This is not a simulation artifact; for we 
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have maintained hexagonal periodic boundary conditions throughout the process. 
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Figure 3. As figure 2(c) but complemented with periodic replicas. showing marked ordered 
domains, cluslers of small panicles. a domain of perfect triangular large panicles and a group 
of four large atoms with a vacancy of a small atom. denoted with a CIOSS. 

Figure 3 shows the final configuration for A = 0.3, complemented with periodic 
boundaries and where we have stressed the domains of perfect binary alloy. The structure of 
these domains looks like some of the configurations found by Sanders for the gem opal [2]. 
One can see clusters of small atoms and domains of perfect triangular lattices of large ones 
too, and also a square configuration of four large atoms with a vacancy of a small one 
(marked with a cross). From these results it is difficult to decide whether the system is in 
an amorphous state after the transition, and there are no signs of particle segregation. On 
the other hand, there is a trend towards binary mixing for low values of h. 

5. Square box 

Now we take the opposite point of view and consider as the starting point a perfect binary 
alloy of 100 particles (50 small and 50 large) in a square box with ,I = 0.3 (and periodic 
boundary conditions), arranged-as in the emerging domain of figure 3-in a ZD NaCl 
structure, with y fixed at 1.59. This is a slightly different value from the y = 1.64 of 
the previous section and of [4] due to the density difference between the square and the 
hexagonal structures. Nevertheless we have verified that this difference does not modify 
the critical parameters of the phase transitions. 

We present in figure 4 a snapshot of the system in the initial configuration, which we 
call the a-phase. The aim is now to investigate the stability of the system from the a-phase 
to a monodisperse configuration when increasing A from A = 0.3 to A = 1, considering the 
same order parameters presented in section 3 but adapted to a square lattice, in order to 
detect the structural changes in the a-phase. 

In figure 5 we exhibit four order parameters: the structure factor p ~ ,  where G is a 
reciprocal-lattice vector of a square lattice, the mean square displacement (A% ) relative 
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Figure 4. A picture of the initial cr-phase system configuration at A = 0.3, in a square box and 
for y = 1.59. ._ 

to the a-phase lattice positions, the Nelson-Halperin order parameter (Vi,) of a square 
structure (i.e. changing 6 to 4 in the exponential function of (P)), the fraction of atoms 
having exactly four neighbours f4 and the pressure as functions of A. All of these. with 
the exception of f4 (figure 5(d)), exhibit sharp discontinuities at ~A = 0.5 and A = 0.85. 
One interesting point concerning the transition for A =.0.5. is the simultaneous jump of 
the order parameters p~ and (A'T }, corresponding to the disappearance of the long-range 
translational order (figures 5(a) and 5(b)), while (Yt I), the bond-Orientation order parameter 
for pairs of small particles, exhibits a rapid increase (from a zero value), indicating a new 
configuration with a different order of local orientations (figure 5(c)). 

and 
f: fail to detect the a-p transition (figure 5(c) and 5(d)). The orientation parameter Y ~ z  
substantially increases after the transition, exhibiting large fluctuations and, according with 
f:, the transition looks like a second-order one. Both results indicate that the cut-off radius 
r, = 1.2 (in units of the first-neighbour distance of the initial A = 0.3 configuration) may 
be-inappropriate. In fact, performing a test with a r, = 1.3, t6e &der parameters lead to a 
sharp first-order transition for A = 0.5. The original choice of i, = 1.2 was made on the 
basis of [SI, as the author stated that rc between first and second neighbours is equivalent, 
within 5%,.to Voronoi' construction; but the present calculation verifies that this is not the 
case in a bidisperse system with very different diameters. 

Hence, we have performed an evaluation of the coordination numbers (for type 1 and 
type 2 atoms separately) using the Voronoi' construction over the averaged configurations 
stored every 2x lo5 time steps. The coordination numbers are sensitive to the two transitions 
but they assign the same value (six) to the a-phase as to the triangular lattice (A > 0.85). 
The difficulty here with the characterization of the a-phase arises from the degeneracy 
of the square array. Actually, thermal vibrations remove the degeneracy and the Voronoi' 
construction identifies six edge polygons, assigning two second neighbours to each particle 
in the lattice. 

So the choice of the order parmeters appropriate for characterizing the transitions is 

On the other hand the order parameters related to the large (type 2) atoms 
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delicate. Here we choose to work with a rather redundant set of order parameters and it is 
obvious that additional diagnostics a posteriori over the stored averaged configuration are 
always possible. Finally, direct inspection of the snapshots can provide very useful guides. 

Coming back to the phase transition for A = 0.5, figure 6 illustrates the configuration 
of the system for that value of A, where a new ordered configuration is apparent. This 
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Figure 6. A snapshot of the averaged panicle positions for h = 0.5 (@-phase configuration) for 
the lmsformation from A = 0.3 to A = I. in a square box and for y = 1.59. 

phase is characterized by presenting pairs of small particles disposed in parallel, equally 
spaced, lines. In these lines all pairs have the same orientation (Z 45" relative to the [lo] 
direction), and from line to line the pairs are oriented almost perpendicularly. Thus, we 
have found a new structure, a superlattice (hereafter referred as a B-phase), with the same 
lattice parameter, along the [lo] direction, as the o-phase structure, while along the [Ol]  
direction the lattice parameter can be two or more times the original one (according to the 
change in the pair orientation from line to line). 

This result is not an artifact of the simulation, as will be~verified from the energy 
calculation, but also the similarities between this 2D p-phase and some patterns of the 
ordered structures of the gem opal obtained by Sanders [2] are dazzling. Particularly, the 
size ratio that Sanders measures is well inside the range of values of A corresponding to the 
p-phase. 

We have performed additional runs with different numbers of particles, to check the 
dependence of the results on the size of the sample. From N = 64 up to N = 256 
one obtains the same qualitative results with minor variations of-the critical value of h 
(A = 0.485-0.500). However, the sequence of angle inclinations from line to line changes 
with size, whereas the value of the free energy per particle does not show any appreciable 
difference. This means that the energy associated with different piir orientations from one 
line to the other is very low, but certainly the two configurations are separated by a high 
energy barrier. A particular aspect of these new structures is that the orientation order of 
the pairs increases from the transition point, A = 0.5, up to a maximum value for A = 0.81, 
detected by the orientation order parameter (Yll), At this point the system undergoes a new 
phase transition to a state that looks like an amorphous one for a~ value of h = 0.85. Both 
transitions (A = 0.5 and h = 0.85) can be clearly identified by any of the order parameters 
utilized except f4, but (Vll) is the one that gives the most complete infomation, and is the 
only one that detects the order of the B-phase. As these diagnostics are especially suited 
for a Square lattice, we cannot utilize them to differentiate between an amorphous state and 
a triangular lattice., However, by direct inspection of the corresponding,snapshot (figure 7), 
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one can say that the amorphous state is actually an almost triangular lattice with defects, a 
grain boundary being the most visible one. 
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Figure 7. A snapshot of the averaged panicle positions far A = I (monodisperse system) after 
the transformation from A = 0.3 (a-phase), in a square box for y = 1.59. In order to visualize 
the gran boundaly look at the picture at B small angle while rotating it.  

Now we focus our attention on the vicinity of A = 0.85 to look at the p-'amorphous' 
transition. We recall that the transition from a triangular lattice to an amorphous 
configuration, reported by Bocquet er a1 [4], occurs at A = 0.78; therefore the difference 
between these values is a strong indication of the hysteresis of this first-order transition. 
In fact the 'amorphous' state reported in [4] is just a metastable state, for values of 
0.5 < A ,< 0.85, of higher energy than the corresponding minimum-energy configuration: 
the 0-phase. Also, the amorphous configuration obtained in the present calculation for 
A > 0.85 is a metastable state, whereas the perfect triangular lattice is the minimum-free- 
energy configuration. The width of this hysteresis cycle, and the required time for the 
system to go from a metastable configuration to the minimum energy one, will be discussed 
below. 

6. Hysteresis 

In order to perform a deeper examination of the hysteresis of the transition, we take the final 
'amorphous' metastable state obtained when going from A = 0.3 to A = I as the starting 
configuration (figure 7) and perform the transformation in size ratio back to A = 0.3. Now, 
no evidence of a first-order transition is found either for A = 0.85 or for A = 0.78. The 
transition for A = 0.78 is not observed because the system is already disordered from the 
beginning ( A  = I ) .  Neither is the reverse transition. at A = 0.85, between the disordered 
state and the 0-phase achieved, even for lower values of A, and this is a indication of 
the large hysteresis of the transition. The system remains in a disordered state while the 
minimum-energy one is the ordered 0-phase. A high energy barrier separates the local 
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minima of the free energy of the two configurations. Figure 8 confirms this hypothesis: 
it shows the pressure versus A for the present transformation (from A = 1 to A = 0.3) as 
well as for the previous  one^ (from A = 0.3 to A = 1). The latter exhibits a discontinuity 
at the transition, while the former is smooth. The curve intersects for A = 0.8, indicating 
the coexistence of the phases, but an energy barrier frustrates the transition and the system 
remains in a disordered configuration down to A = 0.3 , always with an energy greater 
than that corresponding to the ,9- or a-phases. As the simulations have been performed at 
‘low temperatures’, a considerable amount of time would be necessary to observe the jump 
from the metastable disordered configuration to the ordered phase. In order to bypass this 
problem we employed the following procedure: one takes as a starting point the metastable 
configuration for A = 0.35 at low temperature ( y  = 1.59) (this configuration is the result 
of going from the a-phase (A = 0.3) to A = 1 and back to A = 0.35); then the temperature 
of the system is slowly increased, keeping A constant. At a temperature that corresponds 
to y = 1.13 we observe a small jump in one order parameter and a corresponding one 
in the pressure,  as^ is shown in figure 9. Then, decreasing the temperature to the initial 
value of y = 1.59, it is evident that the free energy of the system has decreased (figure 9). 
A picture of the system after the thermal treatment is  shown in figure 10 where one can 
observe a great variety of structures: a relatively big domain of a-phase is well apparent, 
besides some clusters of small atoms, pairs of them and domains of big atoms with perfect 
triangular order. It is remarkable that this heterogeneous structure with domains of a-phase 
returns the memory of the 01-,9 transition: if one increases A once again one can retrieve 
jumps in the order parameters for A = 0.5; the critical size ratio of the phase transition 
remains fixed in this mixed system, but the magnitude of the jumps is reduced because just 
a fraction of the system-the 01 domain-undergoes it. 

10 

9 - increasing h - decreasing h 
2 ‘8 

3 
3 m 

L 7  
p. 

6 

5 
0.3 0.4 0.5 0.6 0.7 0.8 0.9 

n 
h 

Figure 8. The hysteresis of the transformtion: p r e s s u ~  versus A for the uansformntion from 
A = 0.3 to A = 1 and the inverse transformation from A = 1 CO A = 0.3. in P squire box for 
y = 1.59. 

This partially ordered structure may still be ‘improved‘ by means of extra thermal peaks 
but we want to point out that the constant-temperature algorithm is perhaps not the best 
way to do that. As a matter of fact for each temperature the system has to be.subjected 
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5 0.15 0.25 0.35 0.45 
Temperature 

Figure 9. Thermal ueatment of the metastable configuration for A = 0.35: pressure versus 
temperature for the mewstable configuration obtained afta a foah-and-back run for a A- 
transformation. stwing from the e-phase nt h = 0.3 in B square box. The temperature is 
increased from 0.06 ( y  = 1.59) to 0.48 ( y  = 1.13) and then decreased to 0.06 with h fixed at 
0.35. The pressure is in units of r/02 and the temperalure is measured in units of 6 I k g .  

Figure 10. An averaged snapshot (complemented with periodic repliws) for the metastable 
configuration, for A = 0.35 and y = 1.59, after the thermal Ueatment. showing domains of 
a-phase (two of them “ k e d  with solid lines) and dusters of small and big particles. 

to the constant-temperature constraint, so no thermal fluctuation are permitted at any time. 
This constraint may be too strict: the system does not have enough chances to explore the 



Molecular dynamics of a two-dimensional binary alloy 2407 

phase space-particularly when it has a rich structure of hills and valleys. It is possible 
that if the constant-temperature constraint is relaxed, or substituted for with a more efficient 
algorithm, one would get some improvements in the evolution of the system towards an 
ordered structure. Work is in progress in  this direction. 

7. Conclusions 

We have presented here a molecular dynamics simulation of a two-dimensional binary alloy 
of as much as one hundred soft-disk particles. We have obtained an order-disorder transition 
at the same value of A as in the work of Bocquet et a1 141 but also a completely new result, 
the @-phase, a superstructure that is stable between the values of A = 0.5 and A = 0.85, 
and that has not been observed before in simulations. Also, in spite of the fact that the 
simulation is performed in 2D, with a simple model potential and a relatively low number 
of particles, the results are in good agreement with recent and very promising experiments 
on bidisperse colloidal systems, even from a quantitative point of view. Unexpectedly, 
periodic boundary conditions show no influence on the results, i.e. the a-phase domains for 
small A values appear both in the square box and the hexagonal box. As a consequence, we 
think that workable simulations can be of great help in connection with real experiments 
despite the apparently insurmountable gap between the corresponding time scales. As a 
final remark let us say that still ‘better’ configurations can certainly be obtained within 
reasonable computing times using more efficient algorithms, and in this way one might give 
useful hints for the experimental counterpart, such as annealing techniques. 
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